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Abstract
Purpose – This paper aims to predict the behaviour of the vehicles in a mixed driving scenario. This
proposes a deep learning model to predict lane-changing scenarios in highways incorporating current and
historical information and contextual features. The interactions among the vehicles are modelled using long-
short-termmemory (LSTM).

Design/methodology/approach – Predicting the surrounding vehicles’ behaviour is crucial in any
Advanced Driver Assistance Systems (ADAS). To make a decision, any prediction models available in the
literature consider the present and previous observations of the surrounding vehicles. These existing models
failed to consider the contextual features such as traffic density that also affect the behaviour of the vehicles.
To forecast the appropriate driving behaviour, a better context-aware learning method should be able to
consider a distinct goal for each situation is more significant. Considering this, a deep learning-based model is
proposed to predict the lane changing behaviours using past and current information of the vehicle and
contextual features. The interactions among vehicles are modeled using an LSTM encoder-decoder. The
different lane-changing behaviours of the vehicles are predicted and validated with the benchmarked data set
NGSIM and the open data set Level 5.

Findings – The lane change behaviour prediction in ADAS is gaining popularity as it is crucial for safe
travel in a mixed driving environment. This paper shows the prediction of maneuvers with a prediction
window of 5 s using NGSIM and Level 5 data sets. The proposed method gives a prediction accuracy of 97%
on average for all lane-change maneuvers for both the data sets.

Originality/value – This research presents a strategy for predicting autonomous vehicle behaviour based
on contextual features. The paper focuses on deep learning techniques to assist the ADAS.

Keywords Autonomous driving, Behaviour prediction, Context-aware feature,
Lane change scenario, Long short term memory (LSTM)

Paper type Research paper

1. Introduction
With the recent developments in Artificial Intelligence, the vehicles have brought many
services to human lives including advanced driver assistance systems (ADAS). Lane change
is the most common driving behaviour and lot of accidents have been reported globally
due to improper lane changes. The lane change of the neighbouring vehicles has to be
anticipated in advance since it involves the lateral displacement of the vehicle which may
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cause accidents. The driver decides whether to perform a lane change or not by checking the
advantages of the lane change. Thus the autonomous vehicle technology research has
focused more on reducing road accidents that are caused by improper lane changes and thus
improving safety. Behaviour prediction is the major challenge in autonomous driving in a
mixed driving scenario where the autonomous vehicles coexist with human-driven vehicles.
The vehicles must accurately anticipate the behaviour of the different traffic agents to
provide safety. In a mixed traffic environment, the agents include autonomous vehicles,
human-driven vehicles and pedestrians. The major factors influencing a traffic agent’s
behaviour in an environment are other agents’ behaviour, road geometry, traffic rules and
contextual features. There are several practical challenges to the behaviour prediction
problem. Some of the significant challenges are lack of computational resources, limited data
from the onboard sensors and computational cost.

Generally, autonomous vehicles must perform several processing steps to automate their
movement through the complex traffic environment. The first step is to sense the current
environment and to represent it properly. From this representation, the current situation is
anticipated. Based on this, a plan of the trajectory is generated. This trajectory is executed
as the final step and re-planningmay be done if the behaviour changes.

The behaviour prediction of surrounding vehicles involves the understanding of the
surrounding environment and foresees future movement. This supports the decision-
making and provides safety. Several earlier research have looked into predicting lane
change behaviour (Mozaffari and Al-Jarrah, 2020). Lane change behaviour of the target
vehicle depends on several factors such as the position of the vehicles in the environment,
traffic flow in the lanes etc. The behaviour of the vehicles in a traffic environment is highly
uncertain. The environment under consideration continuously changes. Based on the
current situation, the behaviour has to be predicted. The context-aware behaviour prediction
is more challenging. The contextual features that may be considered include weather,
daytime and traffic density (Yoon et al., 2020). The major challenge in behaviour prediction
is modelling the interactions among vehicles in real time in a mixed dynamic environment.
In the mixed driving scenario, the autonomous vehicles must cooperate with the human-
driven vehicles. The existing studies fail to model the spatial and temporal features of the
target vehicle and the neighbouring vehicles.

Considering this, a behaviour prediction scheme is presented here which uses deep
learning techniques to anticipate the lane-change behaviour of the vehicle in a highway
incorporating contextual features.

The following is how the rest of the paper is organized: The available frameworks and
approaches for prediction are discussed in Section 2. The descriptions of the suggested
approach of behaviour prediction are included in Section 3. The suggested scheme’s
evaluation results are discussed in Section 4. Section 5 contains the conclusion, which is
followed by a list of references.

2. Related works
Several studies on behaviour analysis of vehicles have been published. A study of vehicle
monitoring, behaviour prediction and analysis is provided in (Shirazi and Morris, 2017).
Several studies have been undergone in different literature (Mozaffari and Al-Jarrah, 2020)
to identify and predict the surrounding agents’ behaviour in the traffic environment in
highway scenarios. The studies on this area can be divided into different categories in
Lefevre et al. (2014). Some literature concentrates on approaches that are based on the laws
of Physics (Mozaffari and Al-Jarrah, 2020). Some literature anticipates the behaviour based
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on their intended manoeuver (Mahajan et al., 2020) and others considers the interaction
between different agents in the environment (Schulz et al., 2018, 2019).

In Mofan Zhou et al. (2017), Zyner et al. (2017) and Worrall et al. (2020), vehicles’ past
behaviour is used to anticipate how they would behave at intersections. But these methods
fail to consider the behaviour of the nearby vehicles. The target vehicle alone is the
consideration. Few studies focused on the deep learning approaches that considered the
inputs and the presence of other vehicles on the environment (Deo and Trivedi, 2018; Patel
et al., 2018).

Context-aware computing is the process of gathering data from numerous sensors and
making decisions based on the present context’s requirements without the need for human
participation. It describes an application’s capacity to obtain current information about its
surroundings and makes decisions based on that information. Few studies on the contextual
features are included in Gite et al. (2021).

The existing literature has failed to study the target vehicle’s lane change behaviour in a
mixed scenario, considering the surrounding vehicles and contextual information. This
paper presents the behaviour prediction method using Long Short-Term Memory (LSTM),
considering the contextual properties. The basic LSTMs used in Alahi et al. (2016), Wiest
et al. (2012), Hermes et al. (2009) suffer from two problems: the basic LSTM model failed to
instantaneously model the spatial interactions of vehicle and trajectories and sometimes
they suffer from vanishing gradient problem (Heaton et al., 2018). But this problem can be
solved using LSTM with some structural modifications to well represent the spatial
interactions as time series. This new LSTM model is used to model the trajectories and
spatial interactions between vehicles (Jain et al., 2016).

Considering these, an encoder-decoder LSTM model is proposed to predict the lane
change behaviour of the vehicles in an autonomous driving scenario. The motivation of
using encoder-decoder LSTM model is that it is well suited for time-series data, it can
identify and accurately predict behaviours in time-series data, and it is capable of
automatically extracting the features frommassive long time series data.

This studymakes substantial contributions in the following areas:
� Apply a deep-learning based approach to generate a model to foresee the maneuvers

and generate upcoming positions of the vehicle in a time window of 5s.
� Discuss the influence of contextual knowledge on the behaviour prediction

considering traffic density and show that this improves prediction capabilities.
� The proposed model is trained and tested using the benchmarked data set, NGSIM,

which is the most realistic public data set available for traffic data and the Level 5
open data set.

3. Methodology
This paper presents a maneuver-based prediction model that uses LSTM to predict the
human-driven vehicles’ long-term driving behaviour in a mixed driving environment
considering the contextual information. Keep Lane, Change Left and Change Right are the
basic maneuvers. The scenario under consideration is shown in Figure 1.

The human-driven vehicle whose trajectory has to be predicted is represented as the
target vehicle (TV). The vehicles in the environment influence the trajectory of every other
vehicle; but not all of them produce a significant impact on the other vehicle. The vehicles
that impact the target vehicle’s future behaviour can be termed as Nearby Vehicles (NV) and
all others are termed as Distant Vehicles (DV). Here, a threshold distance-based scheme is
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used to classify vehicles into NV and DV. If the vehicles’ longitudinal distance is less than
the threshold distance, they are added to the set NV. The interactions of a maximum of nine
such vehicles that surround the target vehicle are taken. All the other interactions are
considered least significant and are neglected. Figure 2 shows the scenario under
consideration.

Here, NV9 is included since sometimes the vehicle just in front of TV may not be enough
to determine the future traffic condition. The future movement of NV1 always depends on
the change in the positions of NV9.

The aim is to model TV’s future positions within a time window t in the longitudinal and
lateral positions (xt,yt). The historical trajectories of TV and NVi can be represented as xtT
and xti respectively. The input to the model is the historical trajectories of TV and NVis and
outputs the predicted trajectory of TV. The interactions of all the vehicles of interest are
identified and the information is added to the data set.

The vehicle trajectories can be represented as displacements. The inputs and output to
the system is (Dai et al., 2019):

xtT ¼ DX t�thþDtð Þ
T ;DY t�thþDtð Þ

T . . .DX tð Þ
T ; DY tð Þ

T (1)

ytT ¼ DX tþDtð Þ
T ;DY tþDtð Þ

T . . .DX tþtpð Þ
T ;DY tþtpð Þ

T (2)

[DX,DY]: trajectory, which is represented as O= (O1, O2, . . .Ot)
X, Y: Lateral and Longitudinal positions

Figure 1.
The lane-change
scenario in a straight
highway

Figure 2.
Vehicles of interest
around the target
vehicle
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th : historical time window ;

t : current time ; th : historical time window

tp : prediction time window

DX tð Þ
T ;DY tð Þ

T : Position displacement of TV

DX tð Þ
i ; DY tð Þ

i : Position displacement of SVi

Number of Prediction time NP ¼ tp�
Dt (3)

Number of historical time NH ¼ th�
Dt (4)

The following characteristics of the target vehicle are taken into account:
� The target vehicle’s lateral and longitudinal positions represented as xtT and ytT ,

respectively.
� Lateral and longitudinal velocity VxTV and VyTV, respectively.

Each nearby vehicle of interest has the following features.
� The lateral velocity, VxSVi

� The longitudinal velocity VySVi

� Distance from the target vehicle Xt
i and Y

t
i

The contextual features is represented by a vector F = (f1, f2,.fi) where each fi represents the
context feature.

In the traffic scenario, the vehicles interact among themselves in real-time. These
interactions must be properly modelled to improve the prediction accuracy. The long
sequences can be recognized and predicted by LSTMs, but the dependencies between
numerous correlated sequences cannot be captured by a single LSTM. So in this proposed
work, an encoder-decoder LSTM network together with the contextual features is used to
model the interactions among the vehicles in a mixed driving scenario. During each
updation step, one LSTM is assigned to the target vehicle and the neighbouring vehicles and
extract the spatial and temporal features and these features together with the extracted
contextual features are transferred to the higher-level LSTM and analysed the interaction
pattern to predict the lane change behaviour.

The interactions between the vehicles are modelled using LSTM models using Encoder-
Decoder as shown in Figure 3. The contextual features are represented by a vector F and are
passed to the decoder. These models detect the dependencies among the different vehicles
and store the information in the memory. The LSTM network, together with the contextual
information, can be used to detect the different driving patterns and classify them into three
classes such as Keep Lane, Change Left and Change Right. At every prediction window, the
historical data and the interaction details are fed to the input of the LSTM. The sigmoid
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function is applied as an activation function here. The classification results are then passed
into the softmax layer for multiclass classification.

Even if the vehicles’ velocity and driving intentions affect the future behaviour of target
vehicles, external factors may still influence the vehicle’s future trajectory. Traffic density,
weather and other contextual factors can all be taken into account when predicting vehicle
behaviour. The traffic density is taken in this paper as a feature that affects the subject
vehicle’s behaviour. To calculate the influence of traffic density on the behaviour of target
vehicle, the calculated values of lateral and longitudinal distances are taken. The data
are transformed to contain the lane number in increasing order from right to left. Then three
Gaussian models are used to model the future positions of the vehicle to generate three
classes for lane change. These models are trained using the input features, the lateral
velocity and the distance to the current lane. Then a mixture of experts method is used,
which predicts the position of the vehicle.

4. Results and discussion
The benchmark trajectory data set NGSIM US-101 is used to train and test our model. The
US-101 data set was collected from U.S. Highway 101 in Los Angeles, CA and is the largest
public natural driving data set available. This is a real-world vehicle trajectory data set,
which includes 45minutes of data. This data set captured the trajectories of more than 6,000
unique vehicles at 10Hz. This also includes the different lane-changing scenarios. So this
data set is well suited for the scenario discussed here. The data frame in the data set consists

Figure 3.
LSTM network for
behaviour prediction
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of several vehicle parameters such as position, velocity, yaw rate etc (LI et al.). The aerial
view of the US 101 study area is as shown in Figure 4 (Punzo et al., 2011).

The details of different types of trajectories in NGSIM data set is shown in Table 1.
But this data set is highly unbalanced. The right amount of data must be used for

training LSTM models since both insufficient and excess data can affect the training. To
balance the data set, downsampling and oversampling are done. Each trajectory with line
change can be cropped so that only the data part that contains the lane change only is
stored. Random sampling is of the trajectories having no lane change also is done to keep it
balanced. The sampled data set is used for training. Overfitting and underfitting is major
problem while using LSTM. A random set of 80% sampled trajectories is used for training
and gives a suitable model. Then another set of 20% trajectories is chosen for testing.

Figure 5 and 6 show the lateral distance and lateral velocities of the vehicle.
The model is trained using LSTM. The different interactions Ii of the nearby vehicles NVi

have a different impact on the target vehicle. Therefore each interaction is trained
independently. All the models are trained at a rate of 0.001. Then the different LSTMs
are combined and trained. At each training step, a batch of 50 trajectories each of length

Figure 4.
Aerial view of the US-

101 study area

Table 1.
Trajectory statistics
of US highway-101

data set

Data set
No. of
vehicles

Total No. of lane
changes

Mandatory lane
changes (MLC)

Discretionary
lane-change

NGSIM US Highway�101 2169 199 71 128
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50 (i.e. 5 s) is chosen. The randomly chosen parameters are used for training. Adam
optimizer with default values for a and b are used.

To show the future movement, the lane-change trajectory is selected randomly and
observes the result. Different snapshots are shown in Figure 7.

The loss function of each individual trajectory can be calculated as follows:

loss ¼
XNp

i¼1

Y ið ÞTYi (3)

TheMSE loss is calculated as a function:

Loss ¼ 1
N

X
loss (4)

N: Total number of trajectories used.

Figure 5.
Lateral position in the
lane-change scenario

Figure 6.
Lateral velocity in a
lane change scenario
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Figure 7.
Snapshots of lane
change at different

time units
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The prediction window chosen here is 5 s since on average, the lane change process takes
4� 5 s.

The mean and the standard deviation of velocity changes in each prediction window is
calculated to analyse the causes of trajectory prediction error. Then the mean absolute
deviation of position changes is plotted and shown in Figure 8.

Here, it is shown that the position changes are almost the same in different prediction
windows. Thus when the prediction window is increased, the absolute deviation increases
and error gets accumulated. This reduces the prediction accuracy.

The model is trained and tested using the open data set, Level 5 also. The snapshot of the
data set is shown in Figure 9. This data set is a motion data set which consists of object
trajectories and the 3D maps which is collected from Palo Alto, CA (Houston et al., 2020).
This is a real-world vehicle trajectory data set which includes over 20 million frames which
encodes the precise positions and the position and motions of nearby vehicles, cyclists and
pedestrians. The objects are labelled into three classes: vehicles, pedestrians and cyclists.
This data set can be used for behaviour prediction as it includes different driving
behaviours such as lane changes, unprotected turns, merges and intersections and is

Figure 8.
Mean absolute
deviations

Figure 9.
Snapshot of Level 5
Data set
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recorded at various environments that represent congestion, transition between
uncongested and congested conditions, etc.

Tables 2 and 3 compare the prediction accuracy obtained with the proposed method and
LSTM. The proposed method outperforms the LSTM method in all the lane-changing
classes for both the data sets.

The performance of prediction in both set of data can be compared. Table 4 shows the
confusion matrix values for prediction accuracies, precision values, recall values and F1
values are shown.

Figure 10 and Figure 11 show the ROC curves for both the data sets.
The training time of the model with different data sets is also evaluated. Table 5 shows

the approximate training time for each data set. From the table, it is obvious that the
training time rapidly increases in Level 5 data set.

Now, the effect of contextual information on prediction accuracy has to be studied. The
traffic density, T can be calculated as:

T ¼ N
km:NL

(5)

Table 2.
Comparison of

prediction accuracy
for NGSIM data set

Model Actual behaviour

Predicted behaviour
Lane change to left

(%)
Lane change to right

(%)
Lane keep

(%)

LSTM Change left 93.26 1.46 4.97
Change right 3.21 92.1 4.69
Lane keep 3.1 3.33 93.57

LSTM with contextual
features

Change left 97.56 1.46 2.3
Change right 1.24 97.32 2.98
Lane keep 1.02 1.07 96.32

Table 4.
Prediction result

analysis

Behaviour
Prediction accuracy Precision Recall F1 values

NGSIM Level 5 NGSIM Level 5 NGSIM Level 5 NGSIM Level 5

Keep lane 0.9756 0.9698 0.9742 0.9532 0.9665 0.9428 0.9704 0.9344
Change left 0.9732 0.9787 0.8755 0.8621 0.8734 0.8423 0.8598 0.8434
Change right 0.9624 0.9692 0.8675 0.8456 0.9147 0.8254 0.9254 0.8354

Table 3.
Comparison of

prediction accuracy
for level 5 data set

Model Actual behaviour

Predicted behaviour
Lane change to left

(%)
Lane change to right

(%)
Lane keep

(%)

LSTM Change left 91.45 2.32 6.23
Change right 3.02 90.47 6.51
Lane keep 3.48 4.10 92.42

LSTM with contextual features Change left 97.87 0.93 1.2
Change right 1.13 96.92 1.95
Lane keep 1.63 1.39 96.98
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The impact of traffic density on lateral position error can be shown in Figure 12 for different
traffic scenarios. It shows that the lateral prediction error during lane-keep reduces as the
traffic density increases. The error values fluctuate and then almost remain constant with
increasing traffic density.

5. Conclusion
A deep learning approach based on LSTMs, which considers current and past behaviours
and contextual features is proposed to predict the various driving behaviours in a highway
driving scenario. The benchmarked data set NGSIM US-101 and Level 5 are used to validate
the results. The method gives a prediction accuracy of 97% on average for all the driving
maneuvers for both the data sets. The effect of traffic density on the driving maneuvers is
also investigated.

Figure 10.
ROC Curve for
different behaviours
in NGSIM data for
proposed model

Figure 11.
ROC Curve for
different behaviours
in Level 5 data for
proposed model

IJPCC
19,4

488



References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L. and Savarese, S. (2016), “Social LSTM:

human trajectory prediction in crowded spaces”, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 961-971.

Dai, S., Li, L. and Li, Z. (2019), “Modeling vehicle interactions via modified LSTMmodels for trajectory
prediction”, IEEE Access, Vol. 7, pp. 38287-38296.

Deo, N. and Trivedi, M. (2018), “Multi-Modal trajectory prediction of surrounding vehicles with
maneuver based LSTMs”, IEEE Intelligent Vehicles Symposium (IV), pp. 1179-1184.

Gite, S., Kotecha, K. and Ghinea, G. (2021), “Context–aware assistive driving: an overview of techniques
for mitigating the risks of driver in real-time driving environment”, International Journal of
Pervasive Computing and Communications.

Heaton, J., Goodfellow, I., Bengio, Y. and Courville, A. (2018), “Deep learning”, Genetic Programming
and EvolvableMachines, Vol. 19 Nos 1/2, pp. 305-307.

Hermes, C., Wohler, C., Schenk, K. and Kummert, F. (2009), “Long-term vehicle motion prediction”,
IEEE Intelligent Vehicles Symposium, Xi’an, China, pp. 652-657.

Houston, J. Zuidhof, G. Bergamini, L. Ye, Y. Chen, L. Jain, A. Omari, S. Iglovikov, V. and Ondruska, P.
(2020), “One thousand and one hours: self-driving motion prediction dataset”, arXiv:2006.14480

Jain, A., Zamir, A.R., Savarese, S. and Saxena, A. (2016), “Structural-RNN: deep learning on spatio-
temporal graphs”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, pp. 5308-5317.

Lefevre, S., Vasquez, D. and Laugier, C. (2014), “A survey on motion prediction and risk assessment for
intelligent vehicles”, Robomech Journal, Vol. 1 No. 1.

Figure 12.
Median lateral

prediction error with
prediction window 5 s

considering traffic
density

Table 5.
Training time for
different data sets

Data set Training time

NGSIM 1.2 h
Level 5 2.9 h

Context-aware
behaviour
prediction

489



Mahajan, V., Katrakazas, C. and Antoniou, C. (2020), “Prediction of lane-changing maneuvers with
automatic labeling and deep learning”, Transportation Research Record: Journal of the
Transportation Research Board, Vol. 2674 No. 7, pp. 336-347.

Patel, S. and Griffin, B. and Kusano, K. and Corso, J. (2018), “Predicting future lane changes of other
highway vehicles using RNN-based deep models”.

Punzo, V., Borzacchiello, M.T. and Ciuffo, B. (2011), “On the assessment of vehicle trajectory data
accuracy and application to the next generation SIMulation (NGSIM) program data”,
Transportation Research Part C: Emerging Technologies, Vol. 19 No. 6, pp. 1243-1262.

Schulz, J. Hubmann, C. Morin, N. Löchner, J. and Burschka, D. (2019), “Learning interaction-aware
probabilistic driver behavior models from urban scenarios”, doi: 10.1109/IVS.2019.8814080.

Schulz, J., Hubmann, C., Löchner, J. and Burschka, D. (2018), “Interaction-aware probabilistic behavior
prediction in urban environments”, IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3999-4006.

Shirazi, M.S. and Morris, B.T. (2017), “Looking at intersections: a survey of intersection monitoring,
behavior and safety analysis of recent studies”, IEEE Transactions on Intelligent Transportation
Systems, Vol. 18 No. 1, pp. 4-24.

Wiest, J., Höffken, M., Kreßel, U. and Dietmayer, K. (2012), “Probabilistic trajectory prediction with
Gaussian mixture models”, IEEE Intelligent Vehicles Symposium, Madrid, Spain, 2012,
pp. 141-146.

Yoon, Y., Kim, T., Lee, H. and Park, J. (2020), “Road-aware trajectory prediction for autonomous driving
on highways”, Sensors, Vol. 20 No. 17, pp. 1-20.

Zhou, M., Qu, X. and Li, X. (2017), “A recurrent neural network based microscopic car following model
to predict traffic oscillation”, Transportation Research Part C: Emerging Technologies, Vol. 84,
pp. 245-264.

Zyner, A., Worrall, S., Ward, J. and Nebot, E. (2017), “Long short term memory for driver intent
prediction”, IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 2017,
pp. 1484-1489.

Further reading
Mozaffari, S., Al-Jarrah, O.Y., Dianati, M., Jennings, P. and Mouzakitis, A. (2020), “Deep learning-based

vehicle behavior prediction for autonomous driving applications: a review”, IEEE Transactions
on Intelligent Transportation Systems, Vol. 23 No. 1, pp. 33-47.

Zyner, A., Worrall, S. and Nebot, E. (2020), “Naturalistic driver intention and path prediction using
recurrent neural networks”, IEEE Transactions on Intelligent Transportation Systems, Vol. 21
No. 4, pp. 1584-1594.

Corresponding author
Syama R. can be contacted at: syama.nitt@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

IJPCC
19,4

490

http://dx.doi.org/10.1109/IVS.2019.8814080
mailto:syama.nitt@gmail.com

	Context-aware behaviour prediction for autonomous driving: a deep learning approach
	1. Introduction
	2. Related works
	3. Methodology
	4. Results and discussion
	5. Conclusion
	References


